Abstract
By using difference schemes, orthogonal partitions and a replacement method, some new methods to construct pure quantum error-correcting codes are provided from orthogonal arrays. As an application of these methods, we construct several infinite series of quantum error-correcting codes including some optimal ones. Compared with the existing binary quantum codes, more new codes can be constructed, which have a lower number of terms (i.e., the number of computational basis states) for each of their basis states.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献