Affiliation:
1. College of Mathematics and Information Science, Henan Normal University, Xinxiang 453007, China
Abstract
In this paper, by using the Hamming distance, we establish a relation between quantum error-correcting codes ((N,K,d+1))s and orthogonal arrays with orthogonal partitions. Therefore, this is a generalization of the relation between quantum error-correcting codes ((N,1,d+1))s and irredundant orthogonal arrays. This relation is used for the construction of pure quantum error-correcting codes. As applications of this method, numerous infinite families of optimal quantum codes can be constructed explicitly such as ((3,s,2))s for all si≥3, ((4,s2,2))s for all si≥5, ((5,s,3))s for all si≥4, ((6,s2,3))s for all si≥5, ((7,s3,3))s for all si≥7, ((8,s2,4))s for all si≥9, ((9,s3,4))s for all si≥11, ((9,s,5))s for all si≥9, ((10,s2,5))s for all si≥11, ((11,s,6))s for all si≥11, and ((12,s2,6))s for all si≥13, where s=s1⋯sn and s1,…,sn are all prime powers. The advantages of our approach over existing methods lie in the facts that these results are not just existence results, but constructive results, the codes constructed are pure, and each basis state of these codes has far less terms. Moreover, the above method developed can be extended to construction of quantum error-correcting codes over mixed alphabets.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献