Analysis of the Efficiency of Using Heat Exchangers with Porous Inserts in Heat and Gas Supply Systems

Author:

Rydalina Natalia,Antonova Elena,Akhmetova Irina,Ilyashenko Svetlana,Afanaseva OlgaORCID,Bianco VincenzoORCID,Fedyukhin Alexander

Abstract

The creation of efficient and compact heat exchangers is one of the priority tasks arising during the design of heat and gas supply to industrial and residential buildings. As a rule, finned surfaces and turbulization of heat carrier flows are used to increase the efficiency of heat exchange in heat exchangers. The present paper proposes to use novel materials, namely porous material, in the design of highly efficient heat exchangers. The investigation was carried out experimentally and theoretically. To study the possibility of creating such heat exchangers, a multi-purpose test bench is created. The aim of the study was to assess the intensity of heat transfer in heat exchangers using porous metal. Laboratory tests are carried out as part of the experimental study. In the theoretical study, the classical equation for the change in the heat flux density when the coolant passes through the porous insert was used. As a result, a mathematical model was obtained in the form of a second-order differential equation. Boundary conditions were set and a particular solution was obtained. The results of theoretical calculations were compared with experimental data. The performed study experimentally confirmed the efficiency of using porous metal inserts in the design of shell-and-tube heat exchangers. The compiled mathematical model allows one to perform engineering calculations of the considered heat exchangers with porous inserts.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Liquid-Phase Reduction Reactor with a Carbon-Hydrogen Mixture;2024 6th International Youth Conference on Radio Electronics, Electrical and Power Engineering (REEPE);2024-02-29

2. Analysis of the Heat Exchanger Energy Efficiency of Variable Cross Section with an Inhomogeneous Coolant;Latvian Journal of Physics and Technical Sciences;2023-12-01

3. Determination of the effect of the open cell foam material geometry on the value of energy efficiency;Power engineering: research, equipment, technology;2022-06-14

4. Estimation of energy efficiency factor for models of porous automotive heat exchangers;Transportation Research Procedia;2022

5. Vendor selection information system on the electronic trading platform for energy supply companies;E3S Web of Conferences;2021

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3