Improvement of Flow Distribution by New Inlet Header Configuration with Splitter Plates for Plate-Fin Heat Exchanger

Author:

Peng XiangORCID,Li Denghong,Li Jiquan,Jiang Shaofei,Gao Qilong

Abstract

The pressure drop increases along with the decrease in the flow maldistribution in the two-stage distributing inlet headers of a plate-fin heat exchanger. To solve this issue, we proposed a new inlet header configuration with splitter plates to decrease the flow maldistribution and pressure drop simultaneously. We used computational fluid dynamic technology to analyze the flow properties in the inlet header configuration and calculated the flow maldistribution degree of the outlet channels and the pressure drop in the inlet header. We performed a sensitivity analysis between the structural parameters, the flow maldistribution degree, and the pressure drop. We determined the optimum values of the structural parameters (the construction of transition duct, the number of splitter plates, the inclined angle of outermost plates, the height of splitter plates, the height of inlet header, etc.), and acquired the optimum configuration of the improved inlet header. Compared with the traditional inlet header, the flow maldistribution degree and pressure drop decreased by 91.5% and 40.9%, respectively, using the proposed improved inlet header with splitter plates, which performed better than the conventional two-stage distribution inlet header.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Zhejiang Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3