Modeling and Analysis of a Conical Bridge-Type Displacement Amplification Mechanism Using the Non-Uniform Rational B-Spline Curve

Author:

Wang Mingze1ORCID,Zhang Cheng1,Liu Shutian1,Wang Xiaoli1

Affiliation:

1. State Key Laboratory of Structural Analysis, Optimization and CAE Software for Industrial Equipment, Dalian University of Technology, Dalian 116024, China

Abstract

This paper presents a new analytical model of a conical bridge-type displacement amplification mechanism (DAM) considering the effect of external loads and a piezostack actuator (PSA). With the merits of simple implementation and better fitting, the non-uniform rational B-spline (NURBS) is employed to parameterize conical connecting beams of the DAM, and an analytical model of the displacement amplification ratio and input stiffness is established based on Castigliano’s second theorem. After that, considering the interactions with elastic loads and PSA, the actual displacement amplification ratio of the conical DAM is obtained, and the effect of the shape of connecting beams in the performance of the DAM is further analyzed. The proposed analytical model is verified by finite element analysis (FEA), and the results show a maximum error of 6.31% between the calculated value and FEA results, demonstrating the accuracy of the proposed model. A prototype of the conical DAM with optimized shape is fabricated and experimentally tested, which further validates the effectiveness and accuracy of the proposed analytical model. The proposed model offers a new method for analysis and shape optimization of the bridge-type DAM under specific elastic loads.

Funder

National Natural Science Foundation of China

111 Project

Fundamental Research Funds for the Central Universities of China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3