Microstructure Evolution of the Ti-46Al-8Nb-2.5V Alloy during Hot Compression and Subsequent Annealing at 900 °C

Author:

Cao Shouzhen1,Li Zongze2,Pu Jiafei1,Han Jianchao2,Dong Qi1,Zhu Mingdong3

Affiliation:

1. School of Electrical and Mechanical Engineering, Huangshan University, Huangshan 245021, China

2. Engineering Research Center of Advanced Metal Composites Forming Technology and Equipment of Ministry of Education, Taiyuan University of Technology, Taiyuan 030024, China

3. Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China, Chengdu 610213, China

Abstract

TiAl alloys are high-temperature structural materials with excellent comprehensive properties, and their ideal service temperature range is about 700–950 °C. High-Nb containing the Ti-46Al-8Nb-2.5V alloy was subjected to hot compression and subsequent annealing at 900 °C. During hot compression, work-hardening and strain-softening occurred. The peak stresses during compression are positively correlated with the compressive strain rates and negatively correlated with the compression temperatures. The α2 phase exhibited a typical (0001)α2 basal plane texture after hot compression, while the β0 and γ phases did not show a typical strong texture. Subsequent annealing at 900 °C of the hot-compressed samples resulted in significant phase transformations, specifically the α2 → γ and β0 → γ phase transformations. After 30 min of annealing, the volume fraction of the α2 phase decreased from 39.0% to 4.6%. The microstructure characteristics and phase fraction after 60 min of annealing were similar to those after 30 min. According to the calculation of Miller indexes and texture evolution during annealing, the α2 → γ phase transformation did not follow the Blackburn orientation relationship. Multiple crystal-oriented α2 phases with nanoscale widths (20~100 nm) precipitate within the γ phase during the annealing process, which means the occurrence of γ → α2 phase transformation. Still, the γ → α2 phase transformation follows the Blackburn orientation relationship.

Funder

Natural Science Foundation of the Anhui Provincial Education Department

Central Government Guides the Special Fund Projects of Local Scientific and Technological Development

HuangShan University

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3