Fast Semantic Segmentation of Remote Sensing Images Using a Network That Integrates Global and Local Information

Author:

Wu Boyang1,Cui Jianyong1,Cui Wenkai1,Yuan Yirong1ORCID,Ren Xiancong1

Affiliation:

1. College of Oceanography and Space Informatics, China University of Petroleum (East China), Qingdao 266580, China

Abstract

Efficient processing of ultra-high-resolution images is increasingly sought after with the continuous advancement of photography and sensor technology. However, the semantic segmentation of remote sensing images lacks a satisfactory solution to optimize GPU memory utilization and the feature extraction speed. To tackle this challenge, Chen et al. introduced GLNet, a network designed to strike a better balance between GPU memory usage and segmentation accuracy when processing high-resolution images. Building upon GLNet and PFNet, our proposed method, Fast-GLNet, further enhances the feature fusion and segmentation processes. It incorporates the double feature pyramid aggregation (DFPA) module and IFS module for local and global branches, respectively, resulting in superior feature maps and optimized segmentation speed. Extensive experimentation demonstrates that Fast-GLNet achieves faster semantic segmentation while maintaining segmentation quality. Additionally, it effectively optimizes GPU memory utilization. For example, compared to GLNet, Fast-GLNet’s mIoU on the Deepglobe dataset increased from 71.6% to 72.1%, and GPU memory usage decreased from 1865 MB to 1639 MB. Notably, Fast-GLNet surpasses existing general-purpose methods, offering a superior trade-off between speed and accuracy in semantic segmentation.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3