Effects of Damaged Rotor Blades on the Aerodynamic Behavior and Heat-Transfer Characteristics of High-Pressure Gas Turbines

Author:

Mai Thanh DamORCID,Ryu JaiyoungORCID

Abstract

Gas turbines are critical components of combined-cycle power plants because they influence the power output and overall efficiency. However, gas-turbine blades are susceptible to damage when operated under high-pressure, high-temperature conditions. This reduces gas-turbine performance and increases the probability of power-plant failure. This study compares the effects of rotor-blade damage at different locations on their aerodynamic behavior and heat-transfer properties. To this end, we considered five cases: a reference case involving a normal rotor blade and one case each of damage occurring on the pressure and suction sides of the blades’ near-tip and midspan sections. We used the Reynolds-averaged Navier-Stokes equation coupled with the k − ω SST γ turbulence model to solve the problem of high-speed, high-pressure compressible flow through the GE-E3 gas-turbine model. The results reveal that the rotor-blade damage increases the heat-transfer coefficients of the blade and vane surfaces by approximately 1% and 0.5%, respectively. This, in turn, increases their thermal stresses, especially near the rotor-blade tip and around damaged locations. The four damaged-blade cases reveal an increase in the aerodynamic force acting on the blade/vane surfaces. This increases the mechanical stress on and reduces the fatigue life of the blade/vane components.

Funder

Korea Institute of Energy Technology Evaluation and Planning (KETEP) grant funded by the Korea government (MOTIE)

National Research Foundation of Korea

Ministry of Science and ICT, South Korea

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3