Dense Connectivity Based Two-Stream Deep Feature Fusion Framework for Aerial Scene Classification

Author:

Yu YunlongORCID,Liu Fuxian

Abstract

Aerial scene classification is an active and challenging problem in high-resolution remote sensing imagery understanding. Deep learning models, especially convolutional neural networks (CNNs), have achieved prominent performance in this field. The extraction of deep features from the layers of a CNN model is widely used in these CNN-based methods. Although the CNN-based approaches have obtained great success, there is still plenty of room to further increase the classification accuracy. As a matter of fact, the fusion with other features has great potential for leading to the better performance of aerial scene classification. Therefore, we propose two effective architectures based on the idea of feature-level fusion. The first architecture, i.e., texture coded two-stream deep architecture, uses the raw RGB network stream and the mapped local binary patterns (LBP) coded network stream to extract two different sets of features and fuses them using a novel deep feature fusion model. In the second architecture, i.e., saliency coded two-stream deep architecture, we employ the saliency coded network stream as the second stream and fuse it with the raw RGB network stream using the same feature fusion model. For sake of validation and comparison, our proposed architectures are evaluated via comprehensive experiments with three publicly available remote sensing scene datasets. The classification accuracies of saliency coded two-stream architecture with our feature fusion model achieve 97.79%, 98.90%, 94.09%, 95.99%, 85.02%, and 87.01% on the UC-Merced dataset (50% and 80% training samples), the Aerial Image Dataset (AID) (20% and 50% training samples), and the NWPU-RESISC45 dataset (10% and 20% training samples), respectively, overwhelming state-of-the-art methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference95 articles.

1. Integration of Remote Sensing and GIS Techniques for Flood Monitoring and Damage Assessment: A Case Study of Naogaon District, Bangladesh

2. Development technology of principle prototype of high-resolution quantum remote sensing imaging;Bi,2018

3. Urban Remote Sensing;Weng,2018

4. Application of Remote Sensing Technology, GIS and AHP-TOPSIS Model to Quantify Urban Landscape Vulnerability to Land Use Transformation;Mukherjee,2018

5. Geographic Image Retrieval Using Local Invariant Features

Cited by 64 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3