MSCAC: A Multi-Scale Swin–CNN Framework for Progressive Remote Sensing Scene Classification

Author:

Solomon A. Arun1,Agnes S. Akila2ORCID

Affiliation:

1. Department of Civil Engineering, GMR Institute of Technology, Rajam 532127, India

2. Department of Computer Science and Engineering, GMR Institute of Technology, Rajam 532127, India

Abstract

Recent advancements in deep learning have significantly improved the performance of remote sensing scene classification, a critical task in remote sensing applications. This study presents a new aerial scene classification model, the Multi-Scale Swin–CNN Aerial Classifier (MSCAC), which employs the Swin Transformer, an advanced architecture that has demonstrated exceptional performance in a range of computer vision applications. The Swin Transformer leverages shifted window mechanisms to efficiently model long-range dependencies and local features in images, making it particularly suitable for the complex and varied textures in aerial imagery. The model is designed to capture intricate spatial hierarchies and diverse scene characteristics at multiple scales. A framework is developed that integrates the Swin Transformer with a multi-scale strategy, enabling the extraction of robust features from aerial images of different resolutions and contexts. This approach allows the model to effectively learn from both global structures and fine-grained details, which is crucial for accurate scene classification. The model’s performance is evaluated on several benchmark datasets, including UC-Merced, WHU-RS19, RSSCN7, and AID, where it demonstrates a superior or comparable accuracy to state-of-the-art models. The MSCAC model’s adaptability to varying amounts of training data and its ability to improve with increased data make it a promising tool for real-world remote sensing applications. This study highlights the potential of integrating advanced deep-learning architectures like the Swin Transformer into aerial scene classification, paving the way for more sophisticated and accurate remote sensing systems. The findings suggest that the proposed model has significant potential for various remote sensing applications, including land cover mapping, urban planning, and environmental monitoring.

Publisher

MDPI AG

Reference45 articles.

1. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., and Polosukhin, I. (2017). Attention is all you need. Adv. Neural Inf. Process. Syst., 30, Available online: https://papers.nips.cc/paper_files/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html.

2. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., and Gelly, S. (2020). An image is worth 16x16 words: Transformers for image recognition at scale. arXiv.

3. Bazi, Y., Bashmal, L., Al Rahhal, M.M., Al Dayil, R., and Al Ajlan, N. (2021). Vision transformers for remote sensing image classification. Remote Sens., 13.

4. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., and Guo, B. (2021, January 11–17). Swin transformer: Hierarchical vision transformer using shifted windows. Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada.

5. Color indexing;Swain;Int. J. Comput. Vis.,1991

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3