Autonomous Vehicle Localization with Prior Visual Point Cloud Map Constraints in GNSS-Challenged Environments

Author:

Lin XiaohuORCID,Wang Fuhong,Yang BishengORCID,Zhang Wanwei

Abstract

Accurate vehicle ego-localization is key for autonomous vehicles to complete high-level navigation tasks. The state-of-the-art localization methods adopt visual and light detection and ranging (LiDAR) simultaneous localization and mapping (SLAM) to estimate the position of the vehicle. However, both of them may suffer from error accumulation due to long-term running without loop optimization or prior constraints. Actually, the vehicle cannot always return to the revisited location, which will cause errors to accumulate in Global Navigation Satellite System (GNSS)-challenged environments. To solve this problem, we proposed a novel localization method with prior dense visual point cloud map constraints generated by a stereo camera. Firstly, the semi-global-block-matching (SGBM) algorithm is adopted to estimate the visual point cloud of each frame and stereo visual odometry is used to provide the initial position for the current visual point cloud. Secondly, multiple filtering and adaptive prior map segmentation are performed on the prior dense visual point cloud map for fast matching and localization. Then, the current visual point cloud is matched with the candidate sub-map by normal distribution transformation (NDT). Finally, the matching result is used to update pose prediction based on the last frame for accurate localization. Comprehensive experiments were undertaken to validate the proposed method, showing that the root mean square errors (RMSEs) of translation and rotation are less than 5.59 m and 0.08°, respectively.

Funder

National Natural Science Foundation of China

the Key Project of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3