Downscaling Groundwater Storage Data in China to a 1-km Resolution Using Machine Learning Methods

Author:

Zhang Jianxin,Liu KaiORCID,Wang Ming

Abstract

High-resolution and continuous hydrological products have tremendous importance for the prediction of water-related trends and enhancing the capability for sustainable water resources management under climate change and human impacts. In this study, we used the random forest (RF) and extreme gradient boosting (XGBoost) methods to downscale groundwater storage (GWS) from 1° (~110 km) to 1 km by downscaling Gravity Recovery and Climate Experiment (GRACE) and Global Land Data Assimilation System (GLDAS) data from 1° (~110 km) and 0.25° (~25 km) respectively, to 1 km for China. Three evaluation metrics were employed for the testing dataset for 2004−2016: The R2 ranged from 0.77−0.89 for XGBoost (0.74−0.86 for RF), the correlation coefficient (CC) ranged from 0.88−0.94 for XGBoost (0.88−0.93 for RF) and the root-mean-square error (RMSE) ranged from 0.37−2.3 for XGBoost (0.4−2.53 for RF). The R2 of the XGBoost models for GLDAS was 0.64−0.82 (0.63−0.82 for RF), the CC was 0.80−0.91 (0.80−0.90 for RF) and the RMSE was 0.63−1.75 (0.63−1.77 for RF). The downscaled GWS derived from GRACE and GLDAS were validated using in situ measurements by comparing the time series variations and the downscaled products maintained the accuracy of the original data. The interannual changes within 9 river basins between pre- and post-downscaling were consistent, emphasizing the reliability of the downscaled products. Ultimately, annual downscaled TWS, GLDAS and GWS products were provided from 2004 to 2016, providing a solid data foundation for studying local GWS changes, conducting finer-scale hydrological studies and adapting water resources management and policy formulation to local condition.

Funder

National Key Research and Development Plan

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3