Downscaled‐GRACE Data Reveal Anthropogenic and Climate‐Induced Water Storage Decline Across the Indus Basin

Author:

Arshad Arfan12ORCID,Mirchi Ali1ORCID,Taghvaeian Saleh3,AghaKouchak Amir45ORCID

Affiliation:

1. Department of Biosystems and Agricultural Engineering Oklahoma State University Stillwater OK USA

2. Department of Irrigation and Drainage Faculty of Agricultural Engineering and Technology University of Agriculture Faisalabad Faisalabad Pakistan

3. Department of Biological Systems Engineering University of Nebraska Lincoln NE USA

4. Department of Civil and Environmental Engineering University of California Irvine CA USA

5. Department of Earth System Science University of California Irvine CA USA

Abstract

AbstractGRACE (Gravity Recovery and Climate Experiment) has been widely used to evaluate terrestrial water storage (TWS) and groundwater storage (GWS). However, the coarse‐resolution of GRACE data has limited the ability to identify local vulnerabilities in water storage changes associated with climatic and anthropogenic stressors. This study employs high‐resolution (1 km2) GRACE data generated through machine learning (ML) based statistical downscaling to illuminate TWS and GWS dynamics across twenty sub‐regions in the Indus Basin. Monthly TWS and GWS anomalies obtained from a geographically weighted random forest (RFgw) model maintained good consistency with original GRACE data at the 25 km2 grid scale. The downscaled data at 1 km2 resolution illustrate the spatial heterogeneity of TWS and GWS depletion within each sub‐region. Comparison with in‐situ GWS from 2,200 monitoring wells shows that downscaling of GRACE data significantly improves agreement with in‐situ data, evidenced by higher Kling‐Gupta Efficiency (0.50–0.85) and correlation coefficients (0.60–0.95). Hotspots with the highest TWS and GWS decline rate between 2002 and 2023 were Dehli Doab (−442, −585 mm/year), BIST Doab (−367, −556 mm/year), Rajasthan (−242, −381 mm/year), and BARI (−188, −333 mm/year). Based on a general additive model, 47%–83% of the TWS decline was associated with anthropogenic stressors mainly due to increasing trends of crop sown area, water consumption, and human settlements. The decline rate of TWS and GWS anomalies was lower (i.e., −25 to −75 mm/year) in upstream sub‐regions (e.g., Yogo, Gilgit, Khurmong, Kabul) where climatic factors (downward shortwave radiations, air temperature, and sea surface temperature) explained 72%–91% of TWS/GWS changes. The relative influences of climatic and anthropogenic stressors varied across sub‐regions, underscoring the complex interplay of natural‐human activities in the basin. These findings inform place‐based water resource management in the Indus Basin by advancing the understanding of local vulnerabilities.

Funder

National Science Foundation

Publisher

American Geophysical Union (AGU)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3