A Semi-Physical Approach for Downscaling Satellite Soil Moisture Data in a Typical Cold Alpine Area, Northwest China

Author:

Cao ZetaoORCID,Gao Hongxia,Nan ZhuotongORCID,Zhao Yi,Yin Ziyun

Abstract

Microwave remote sensing techniques provide a direct measurement of surface soil moisture (SM), with advantages for all-weather observations and solid physics. However, most satellite microwave soil moisture products fail to meet the requirements of land surface studies for high-resolution surface soil moisture data due to their coarse spatial resolutions. Although many approaches have been proposed to downscale the spatial resolution of satellite soil moisture products, most of them have been tested in flat areas where the surface is relatively homogeneous. Thus, those established approaches are often inapplicable for downscaling in cold alpine areas with complex terrain where multiple factors control the variations in surface soil moisture. In this work, we re-inferred and verified the mathematical assumption behind a semi-physical approach for downscaling satellite soil moisture data and extended this approach for cold alpine areas. Instead of directly deriving SM from proxy variables, this approach relies on a relationship between two standardized variables of SM and apparent thermal inertia (ATI), in which the sub grid standard deviation for SM is estimated by a physical hydraulic model taking soil texture data as input. The approach was applied to downscale the soil moisture active passive (SMAP) daily data in a typical cold alpine basin, i.e., the Babao River basin located in the Qilian Mountains of Northwest China. We observed good linearity between the computed ATI and SM observations on most wireless sensor network sites installed in the study basin, which justifies the underlying assumption. The sub grid standard deviations for the SMAP grid estimated through the Mualem-van Genuchten model can broadly represent the real characteristics. The downscaled 1-km resolution results correlated well with the in-situ SM observations, with an average correlation coefficient of 0.74 and a small root mean square error (0.096 cm3/cm3). The downscaled results show more and consistent textural details than the original SMAP data. After removal of biases in the original SMAP data even higher agreements with the observations can be achieved. These results demonstrate the adequacy of the proposed semi-physical approach for downscaling satellite soil moisture data in cold alpine areas, and the resultant fine-resolution data can serve as useful databases for land surface and hydrological studies in those areas.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3