Identification of Water Layer Presence in Paddy Fields Using UAV-Based Visible and Thermal Infrared Imagery

Author:

Wei Guangfei1,Chen Huifang1,Lin En1,Hu Xuhua1,Xie Hengwang2,Cui Yuanlai1,Luo Yufeng1ORCID

Affiliation:

1. State Key Laboratory of Water Resources Engineering and Management, Wuhan University, Wuhan 430072, China

2. Jiangxi Center Station of Irrigation Experiment, Nanchang 330201, China

Abstract

The accurate identification of the water layer condition of paddy fields is a prerequisite for precise water management of paddy fields, which is important for the water-saving irrigation of rice. Until now, the study of unmanned aerial vehicle (UAV) remote sensing data to monitor the moisture condition of field crops has mostly focused on dry crops, and research on the water status of paddy fields has been relatively limited. In this study, visible and thermal infrared images of paddy fields at key growth stages were acquired using a UAV remote sensing platform, and three model input variables were constructed by extracting the color features and temperature features of each field, while K-nearest neighbor (KNN), support vector machine (SVM), random forest (RF), and logistic regression (LR) analysis methods were applied to establish a model for identifying the water layer presence in paddy fields. The results showed that KNN, SVM, and RF performed well in recognizing the presence of water layers in paddy fields; KNN had the best recognition accuracy (89.29%) via algorithm comparison and parameter preference. In terms of model input variables, using multisource remote sensing data led to better results than using thermal or visible images alone, and thermal data was more effective than visible data for identifying the water layer status of rice fields. This study provides a new paradigm for monitoring the water status of rice fields, which will be key to the precision irrigation of paddy fields in large regions in the future.

Funder

NSFC-MWR-CTGC Joint Yangtze River Water Science Research Project

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3