Depositing a Titanium Coating on the Lithium Neutron Production Target by Magnetron Sputtering Technology

Author:

Qiao Zhaopeng,Li Xiaobo,Lv Yongsheng,Xie Yupeng,Hu Yaocheng,Wang Jie,Li Haipeng,Wang Sheng

Abstract

Lithium (Li) is one of the commonly used target materials for compact accelerator-based neutron source (CANS) to generate neutrons by 7Li(p, n)7 Be reaction. To avoid neutron yield decline caused by lithium target reacting with the air, a titanium (Ti) coating was deposited on the lithium target by magnetron sputtering technology. The color change processes of coated and bare lithium samples in the air were observed and compared to infer the chemical state of lithium qualitatively. The surface topography, thickness, and element distribution of the coating were characterized by SEM, EDS and XPS. The compositions of samples were inferred by their XRD patterns. It was found that a Ti coating with a thickness of about 200 nanometers could effectively isolate lithium from air and stabilize its chemical state in the atmosphere for at least nine hours. The Monte Carlo simulations were performed to estimate the effects of the Ti coating on the incident protons and the neutron yield. It turned out that these effects could be ignored. This research indicates that depositing a thin, titanium coating on the lithium target is feasible and effective to keep it from compounds’ formation when it is exposed to the air in a short period. Such a target can be installed and replaced on an accelerator beam line in the air directly.

Funder

National Natural Science Foundation of China

key project of Intergovernmental International Scientific and Technological Innovation Cooper-ation in China

Publisher

MDPI AG

Subject

General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3