Improving the Prediction of Soil Organic Matter in Arable Land Using Human Activity Factors

Author:

Ning LixinORCID,Cheng Changxiu,Lu Xu,Shen ShiORCID,Zhang Liang,Mu Shaomin,Song Yunsheng

Abstract

Detailed spatial distribution of soil organic matter (SOM) in arable land is essential for agricultural management and decision making. Based on digital soil mapping (DSM) theory, much attention has been focused on the selection of environmental covariates. However, the importance of human activity factors in SOM prediction has not received enough attention, especially in arable soil. Moreover, due to the insufficient amount of soil sampling data used to train and validate the DSM model, the prediction results may be questionable, and some even contradictory. This paper explores the effectiveness of the human footprint, amount of fertilizer application, agronomic management level, crop planting type, and irrigation guarantee degree in SOM mapping of arable land in Heilongjiang Province. The results show that the model only including environmental covariates accounts for 41% of the variation in SOM distribution. The model combining the five human activity factors increases the SOM spatial prediction by 39% in terms of R2 (coefficient of determination), 12% in terms of RMSE (root mean square error), 15% in terms of MAE (mean absolute error), and 11% in terms of LCCC (Lin’s concordance correlation coefficient), showing better prediction accuracy and performance. This indicates that human activity factors play a crucial role in determining SOM distribution in arable land. In the SOM prediction, soil moisture is the most important environmental covariate, and the amount of fertilizer application with a relative importance of 11.36% (ranking 3rd) is the most important human activity factor, higher than the annual average precipitation and elevation. From a spatial point of view, the Sanjiang Plain is a difficult area for prediction.

Funder

Strategic Priority Research Program of the Chinese 587 Academy of Sciences

Shandong Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3