Digital Mapping of Soil Organic Matter in Northern Iraq: Machine Learning Approach

Author:

Khalaf Halmat S.1,Mustafa Yaseen T.1ORCID,Fayyadh Mohammed A.2

Affiliation:

1. Department of Environmental Science, College of Science, University of Zakho, Zakho 42002, Kurdistan Region, Iraq

2. Department of Soil and Water Science, College of Agricultural Engineering Sciences, University of Duhok, Duhok 42001, Kurdistan Region, Iraq

Abstract

Soil organic matter (SOM) is an essential component of soil fertility that plays a vital role in the preservation of healthy ecosystems. This study aimed to produce an SOM-level map of the Batifa region in northern Iraq. Random forest (RF) and extreme gradient boosting (XGBoost) models were used to predict the SOM spatial distribution. A total of 96 soil samples were collected from the surface layer (0–30 cm) of both cropland and soil areas in Batifa. In addition, remote sensing data were obtained from Landsat 8, including bands 1–7, 10, and 11. Supplementary variables such as the normalized difference vegetation index (NDVI), soil-adjusted vegetation index (SAVI), brightness index (BI), and digital elevation model (DEM) were employed as tools to predict SOM levels across the region. To evaluate the accuracy of the RF and XGBoost models in predicting SOM levels, statistical metrics, including mean absolute error (MAE), root mean square error (RMSE), and determination coefficient (R2), were used, with 80% of the data used for prediction and 20% for validation. The findings of this study revealed that the XGBoost model exhibited higher accuracy (MAE = 0.41, RMSE = 0.62, and R2 = 0.92) in predicting SOM than the RF model (MAE = 0.65, RMSE = 0.96, R2 = 0.79). Band 10, DEM, SAVI, and NDVI were identified as the most important predictors for both the models. The methodology employed in this study, which utilizes machine learning models, has the potential to map SOM in similar settings. Furthermore, the results offer significant insights for the stakeholders involved in soil management, thereby facilitating the enhancement of agricultural techniques.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference59 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3