Pull-Based Distributed Event-Triggered Circle Formation Control for Multi-Agent Systems with Directed Topologies

Author:

Xu Peng,Zhao Hongfa,Xie Guangming,Tao JinORCID,Xu MinyiORCID

Abstract

This paper investigates a circle formation control problem for multi-agent systems with directed topologies via pull-based distributed event-triggered control principles. Firstly, for scenarios of continuous communication, a pull-based distributed event-triggered principle is proposed. It is proved that if the communication topology is irreducible and has a directed spanning tree, the event-triggered coupling continuous communication can lead multiple agents to form a desired circle formation. Then, the results are extended to discontinuous communication scenarios, where all the agents use a model of their neighborhoods to generate self-triggered instants without monitoring continuously, update the local controller here, and if necessary, local broadcast information based on the adopted control inputs to neighboring agents. In addition, Zeno behavior can be excluded during the whole process. Finally, numerical simulation results are given to demonstrate the effectiveness of the proposed circle formation control methods.

Funder

Academy of Finland

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3