Use of Multi-Temporal LiDAR to Quantify Fertilization Effects on Stand Volume and Biomass in Late-Rotation Coastal Douglas-Fir Forests

Author:

Kelley JasonORCID,Trofymow John A. (Tony),Metsaranta Juha M.,Filipescu Cosmin N.,Bone Christopher

Abstract

Forest fertilization is common in coastal British Columbia as a means to increase wood production and potentially enhance carbon sequestration. Generally, the effects of fertilization are determined by measuring sample plots pre- and post-treatment, resulting in fertilization effects being determined for a limited portion of the treatment area. Applications of remote sensing-based enhanced forest inventories have allowed for estimations to expand to the wider forested area. However, these applications have not focused on monitoring the effects of silvicultural treatments. The objective of this research was to examine if a multi-temporal application of the LiDAR area-based method can be used to detect the fertilization effects on volume, biomass, and height in a second-growth Douglas-fir (Pseudotsuga menziesii) stand. The study area on Vancouver Island was fertilized in January 2007, and sample plots were established in 2011. LiDAR acquisitions were made in 2004, prior to fertilization, and in 2008, 2011, and 2016, covering both treated and untreated areas. A total of 29 paired LiDAR blocks, comprised of four 20 m resolution raster cells, were selected on either side of the fertilization boundary for analysis of the effects across several different stand types differing in the percentage of Douglas-fir, site index, and age. Random forest (RF) plot-level models were developed to estimate total stem volume and total stem biomass for each year of LiDAR acquisition using an area-based approach. Plot level results showed an increase in stem volume by 13% fertilized over control from 2005 to 2011, which was similar to a 14% increase in above-ground carbon stocks estimated using a tree-ring stand reconstruction approach. Plot-level RF models showed R2 values of 0.86 (volume) and 0.92 (biomass) with relative cross-validated root mean square errors of 12.5% (volume) and 11.9% (biomass). For both the sample plots and LiDAR blocks, statistical results indicated no significant differences in volume or biomass between treatments. However, significant differences in height increments were detected between treatments in LiDAR blocks. The results from this research highlight the promising potential for the use of enhanced forest inventory methods to rapidly expand the assessment of treatment effects beyond sample plots to the stand, block, or landscape level.

Funder

Natural Resources Canada-Canadian Wood Fibre Centre

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3