Combining Area-Based and Individual Tree Metrics for Improving Merchantable and Non-Merchantable Wood Volume Estimates in Coastal Douglas-Fir Forests

Author:

Kelley JasonORCID,Trofymow J. A. (Tony),Bone Christopher

Abstract

Forest management practices can increase climate change mitigation potential through applications focused on carbon budgets. One such application involves utilizing non-merchantable material (i.e., logging residues typically piled and burned) for bio-energy. However, limited remote sensing data is available for estimating wood residues until after timber has been harvested, at which point recovery of residual wood is of little financial interest. This research utilizes a hybrid method to develop models that provide pre-harvest estimates of the amount of merchantable and non-merchantable material that would result from harvesting and investigates the scalability and transferability of such measures to the harvest block level. Models were trained using 38 plots across two sites dominated by Douglas-fir, then expanded to ten harvest blocks, and transferred to eight blocks from two sites without training data before being compared against multiple independent block-level estimates. Model results showed root mean square errors of 35% and 38% for merchantable and non-merchantable volumes, respectively. Merchantable volume estimates in blocks with training had average absolute differences from the harvest scale (9–34%) similar to transferred blocks without training (15–20%). Non-merchantable model results were also similar in both trained and transferred harvest blocks, with the pre-harvest model results having lower differences from the post-harvest geospatial versus field surveys. The results from this study show promise for hybrid methods to improve estimates of merchantable wood volume compared to conventional forest cover data approaches, and provide the ability to predict non-merchantable volumes within the range of accuracy of post-harvest residue survey methods.

Funder

Canadian Wood Fibre Centre

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3