Study of Quality Control Methods Utilizing IRMCD for HY-2B Data Assimilation Application

Author:

Hu Jiazheng1,Zhang Yu1,Xu Jianjun2,Li Jiajing1,Shao Duanzhou1,Tan Qichang1,Feng Junjie1

Affiliation:

1. College of Ocean and Meteorology, Guangdong Ocean University, Zhanjiang 524088, China

2. CMA-GDOU Joint Laboratory for Marine Meteorology & South China Sea, Institute of Marine Meteorology, Guangdong Ocean University, Zhanjiang 524088, China

Abstract

Quality control (QC) of HaiYang-2B (HY-2B) satellite data is mainly based on the observation process, which remains uncertain for data assimilation (DA). The data in operation have not been widely used in numerical weather prediction. To ensure HY-2B data meet the theoretical assumptions for DA applications, the iterated reweighted minimum covariance determinant (IRMCD) QC method was studied in HY-2B data based on the typhoon “Chanba”. The statistical results showed that most of the outliers were eliminated, and the observation increment distribution of the HY-2B data after QC (QCed) was closer to a Gaussian distribution than the raw data. The kurtosis and skewness of the QCed data were much closer to zero. The QCed track demonstrated the lowest accumulated error and the best intensity in typhoon assimilation, and the QCed intensity was closest to the observation during the nearshore enhancement, exhibiting the strongest intensity among the experiment. Further analysis revealed that the improvement was accompanied by a significant reduction in vertical wind shear during the nearshore enhancement of the typhoon. The QCed moisture flux divergence and vertical velocity in the upper layer increased significantly, which promoted the upward transport of momentum in the lower layers and contributed to the maintenance of the typhoon’s barotropic structure. Compared with the assimilation of raw data, the effective removal of outliers using the IRMCD algorithm significantly improved the simulation results for typhoons.

Funder

National Natural Science Foundation of China

National Key R&D Program of China

scientific research start-up funds of Guangdong Ocean University

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3