Affiliation:
1. Department of Earth and Environmental Sciences University of Milano–Bicocca Milan Italy
2. Department of Meteorology and Climate, CIMA Research Foundation Savona Italy
3. Institute of Atmospheric and Climate Sciences Consiglio Nazionale delle Ricerche (ISAC–CNR) Turin Italy
Abstract
AbstractThe thermal air–sea interaction mechanism that modulates the atmospheric mixing due to sea‐surface temperature (SST) variability is studied with long‐term consistent satellite records. Statistical analyses of daily and instantaneous wind and SST data are performed over the major western boundary currents (WBCs). This wind–SST coupling, which is mediated by atmospheric mixing, is found to be very relevant on daily, and even shorter, time scales. Co‐located and simultaneous SST and surface wind fields (from Advanced Very High Resolution Radiometer and Advanced Scatterometer data) reveal that the atmosphere responds instantaneously to the presence of SST structures with a larger coupling coefficient with respect to daily and monthly time‐averaged fields. The coupling strength varies seasonally over WBCs in the Northern Hemisphere, with wintertime coupling being the lowest. Reanalysis data show that this behaviour is related to the seasonality of the air–sea temperature difference over the region of interest. Over the Northern Hemisphere WBCs, dry and cold continental air masses drive very unstable conditions, associated with very weak thermal air–sea coupling.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献