Estimation of Astronomical Seeing with Neural Networks at the Maidanak Observatory

Author:

Shikhovtsev Artem Y.1ORCID,Kiselev Alexander V.1ORCID,Kovadlo Pavel G.1,Kopylov Evgeniy A.2ORCID,Kirichenko Kirill E.1,Ehgamberdiev Shuhrat A.34,Tillayev Yusufjon A.34ORCID

Affiliation:

1. Institute of Solar-Terrestrial Physics SB RAS, Irkutsk 664033, Russia

2. Institute of Astronomy, Russian Academy of Sciences, Moscow 119017, Russia

3. Ulugh Beg Astronomical Institute UzAS, Tashkent 100052, Uzbekistan

4. Department of Astronomy and Astrophysics, Physics Faculty, National University of Uzbekistan, Tashkent 100174, Uzbekistan

Abstract

In the present article, we study the possibilities of machine learning for the estimation of seeing at the Maidanak Astronomical Observatory (38∘40′24″ N, 66∘53′47″ E) using only Era-5 reanalysis data. Seeing is usually associated with the integral of the turbulence strength Cn2(z) over the height z. Based on the seeing measurements accumulated over 13 years, we created ensemble models of multi-layer neural networks under the machine learning framework, including training and validation. For the first time in the world, we have simulated optical turbulence (seeing variations) during night-time with deep neural networks trained on a 13-year database of astronomical seeing. A set of neural networks for simulations of night-time seeing variations was obtained. For these neural networks, the linear correlation coefficient ranges from 0.48 to 0.68. We show that modeled seeing with neural networks is well-described through meteorological parameters, which include wind-speed components, air temperature, humidity, and turbulent surface stresses. One of the fundamental new results is that the structure of small-scale (optical) turbulence over the Maidanak Astronomical Observatory does not depend or depends negligibly on the large-scale vortex component of atmospheric flows.

Funder

Ministry of Science and Higher Education of the Russian Federation

RSF

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3