The Elusive Nature of “Seeing”

Author:

Tokovinin Andrei1ORCID

Affiliation:

1. Cerro Tololo Inter-American Observatory|NSF’s NOIRLab, Casilla 603, La Serena 1720236, Chile

Abstract

Atmospheric image blur, “seeing”, is one of the key parameters that influences the selection of observatory sites and the performance of ground-based telescopes. In this review, the common definition of seeing based on the Kolmogorov turbulence model is recalled. The ability of this model to represent real, non-stationary fluctuations of the air refractive index is discussed. Even in principle, seeing (a model parameter) cannot be measured with arbitrary accuracy; consequently, describing atmospheric blur by a single number, seeing, is a crude approximation. The operating principles of current seeing monitors are outlined. They measure optical effects caused by turbulence, sampling certain regions of spatial and temporal spectrum of atmosphreic optical disturbances, and interpret their statistics in the framework of the standard model. Biases of seeing monitors (measurement noise, propagation, finite exposure time, optical defects, wind shake, etc.) should be quantified and corrected using simulations, while instrument comparison campaigns serve as a check. The elusive nature of seeing follows from its uniqueness (a given measurement cannot be repeated or checked later), its non-stationarity (dependence on time, location, and viewing direction), a substantial role of the highly variable surface layer, and a potential bias caused by the air flow in the immediate vicinity of the seeing monitors. The results of seeing measurements are outside the scope of this review.

Funder

NSF’s NOIRLab

Publisher

MDPI AG

Subject

Atmospheric Science,Environmental Science (miscellaneous)

Reference67 articles.

1. Seeing: Its Cause and Cure;Young;Astrophys. J.,1974

2. Fundamental and applied aspects of astronomical “seeing”;Coulman;Annu. Rev. Astron. Astrophys.,1985

3. Mirror, Dome, and Natural Seeing at CFHT;Racine;Publ. Astron. Soc. Pac.,1991

4. Thirty Meter Telescope Site Testing I: Overview;Els;Publ. Astron. Soc. Pac.,2009

5. Kuiper, G.P., and Middlehurst, B.M. (1961). Telescopes, Chicago Univercity Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3