A Radar Echo Extrapolation Model Based on a Dual-Branch Encoder–Decoder and Spatiotemporal GRU

Author:

Cheng Yong1,Qu Haifeng2,Wang Jun1,Qian Kun2,Li Wei3,Yang Ling4,Han Xiaodong5,Liu Min6

Affiliation:

1. School of Software, Nanjing University of Information Science and Technology, Nanjing 210044, China

2. School of Automation, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing 210044, China

4. School of Applied Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China

5. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China

6. School of Hydrology and Water Resources, Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

Precipitation forecasting is an immensely significant aspect of meteorological prediction. Accurate weather predictions facilitate services in sectors such as transportation, agriculture, and tourism. In recent years, deep learning-based radar echo extrapolation techniques have found effective applications in precipitation forecasting. However, the ability of existing methods to extract and characterize complex spatiotemporal features from radar echo images remains insufficient, resulting in suboptimal forecasting accuracy. This paper proposes a novel extrapolation algorithm based on a dual-branch encoder–decoder and spatiotemporal Gated Recurrent Unit. In this model, the dual-branch encoder–decoder structure independently encodes radar echo images in the temporal and spatial domains, thereby avoiding interference between spatiotemporal information. Additionally, we introduce a Multi-Scale Channel Attention Module (MSCAM) to learn global and local feature information from each encoder layer, thereby enhancing focus on radar image details. Furthermore, we propose a Spatiotemporal Attention Gated Recurrent Unit (STAGRU) that integrates attention mechanisms to handle temporal evolution and spatial relationships within radar data, enabling the extraction of spatiotemporal information from a broader receptive field. Experimental results demonstrate the model’s ability to accurately predict morphological changes and motion trajectories of radar images on real radar datasets, exhibiting superior performance compared to existing models in terms of various evaluation metrics. This study effectively improves the accuracy of precipitation forecasting in radar echo images, provides technical support for the short-range forecasting of precipitation, and has good application prospects.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3