Fusion of Rain Radar Images and Wind Forecasts in a Deep Learning Model Applied to Rain Nowcasting

Author:

Bouget VincentORCID,Béréziat DominiqueORCID,Brajard JulienORCID,Charantonis AnastaseORCID,Filoche Arthur

Abstract

Short- or mid-term rainfall forecasting is a major task with several environmental applications such as agricultural management or flood risk monitoring. Existing data-driven approaches, especially deep learning models, have shown significant skill at this task, using only rainfall radar images as inputs. In order to determine whether using other meteorological parameters such as wind would improve forecasts, we trained a deep learning model on a fusion of rainfall radar images and wind velocity produced by a weather forecast model. The network was compared to a similar architecture trained only on radar data, to a basic persistence model and to an approach based on optical flow. Our network outperforms by 8% the F1-score calculated for the optical flow on moderate and higher rain events for forecasts at a horizon time of 30 min. Furthermore, it outperforms by 7% the same architecture trained using only rainfall radar images. Merging rain and wind data has also proven to stabilize the training process and enabled significant improvement especially on the difficult-to-predict high precipitation rainfalls.

Funder

Norges Forskningsråd

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advances and Challenges in Weather Nowcasting : A Comprehensive Review of Modern Techniques and Models;International Journal of Scientific Research in Computer Science, Engineering and Information Technology;2024-09-05

2. Forecasting Convective Storms Trajectory and Intensity by Neural Networks;Forecasting;2024-05-19

3. Radar-Based Precipitation Nowcasting Based on Improved U-Net Model;Remote Sensing;2024-05-09

4. Deployment of 3D-Conv-LSTM for Precipitation Nowcast via Satellite Data;2024 4th International Conference on Pervasive Computing and Social Networking (ICPCSN);2024-05-03

5. Research on short-term and impending precipitation forecasting based on deep spatiotemporal network;Journal of Electronic Imaging;2024-04-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3