Effects of Dust Storm and Wildfire Events on Phytoplankton Growth and Carbon Sequestration in the Tasman Sea, Southeast Australia

Author:

Nguyen Hiep Duc12ORCID,Leys John345ORCID,Riley Matthew3ORCID,White Stephen3,Azzi Merched3,Trieu Toan3,Salter David3,Ji Fei3ORCID,Nguyen Huynh6ORCID,Chang Lisa Tzu-Chi3ORCID,Monk Khalia3ORCID,Firth Justine3,Fuchs David3,Barthelemy Xavier3ORCID

Affiliation:

1. Laboratory of Environmental Sciences and Climate Change, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City 700000, Vietnam

2. Faculty of Environment, School of Technology, Van Lang University, Ho Chi Minh City 700000, Vietnam

3. NSW Department of Planning and Environment, P.O. Box 29, Lidcombe, NSW 2141, Australia

4. The Fenner School of Environment & Society, Australian National University, Acton, ACT 2601, Australia

5. Land and Water—Black Mountain, Commonwealth Scientific and Industrial Research Organisation, Acton, ACT 2601, Australia

6. Faculty of Engineering and Information Technology (IT), University of Technology Sydney, Ultimo, NSW 2007, Australia

Abstract

Dust storms and wildfires occur frequently in south-eastern Australia. Their effects on the ecology, environment and population exposure have been the focus of many studies recently. Dust storms do not emit ground-sequestered carbon, but wildfires emit significant quantities of carbon into the atmosphere. However, both natural events promote phytoplankton growth in water bodies because carbon, and other trace elements such as iron, deposit on the surface water of oceans. Carbon dioxide is reabsorbed by phytoplankton via photosynthesis. The carbon balance cycle due to dust storms and wildfires is not well known. Recent studies on the carbon emission of the 2019–2020 summer wildfires in eastern Australia indicated that this megafire event emitted approximately 715 million tonnes of CO2 (195 Tg C) into the atmosphere from burned forest areas. This study focusses on the association of dust storms and wildfires in southeastern Australia with phytoplankton growth in the Tasman Sea due to the February 2019 dust storm event and the 2019–2020 Black Summer wildfires. Central Australia and western New South Wales were the sources of the dust storm emission (11 to 16 February 2019), and the Black Summer wildfires occurred along the coast of New South Wales and Victoria (from early November 2019 to early January 2020). The WRF-Chem model is used for dust storm simulation with the AFWA (Air Force Weather Agency of the US) dust emission version of the GOCART model, and the WRF-Chem model is used for wildfire simulation with FINN (Fire Emission Inventory from NCAR) emission data. The results show the similarities and differences in the deposition of particulate matter, phytoplankton growth and carbon reabsorption patterns in the Tasman Sea from these events. A higher rate of deposition of PM2.5 on the ocean surface corresponds to a higher rate of phytoplankton growth. Using the WRF-Chem model, during the 5-day dust storm event in February 2019, approximately ~1230 tons of total dust was predicted to have been deposited in the Tasman Sea, while ~132,000 tons of PM10 was deposited in the early stage of the wildfires from 1 to 8 November 2019.

Publisher

MDPI AG

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3