Global ocean primary production trends in the modern ocean color satellite record (1998–2015)

Author:

Gregg Watson WORCID,Rousseaux Cecile S

Abstract

Abstract Ocean primary production (PP), representing the uptake of inorganic carbon through photosynthesis, supports marine life and affects carbon exchange with the atmosphere. It is difficult to ascertain its magnitude, variability, and trends due to our inability to measure it directly at large scales. Yet it is paramount for understanding changes in marine health, fisheries, and the global carbon cycle. Using assimilation of ocean color satellite data into an ocean biogeochemical model, we estimate that global net ocean PP has experienced a small but significant decline −0.8 PgC y−1 (−2.1%) decade−1 (P < 0.05) in the 18-year satellite record from 1998 to 2015. This decline is associated with shallowing surface mixed layer depth (−2.4% decade−1) and decreasing nitrate concentrations (−3.2% decade−1). Relative contributions to PP by various types of ocean phytoplankton have changed, with decreases in production by intermediate-sized phytoplankton represented by chlorophytes (−14.3% decade−1). This is partially compensated by increases from the unique, more nutrient-efficient, coccolithophores (8.4% decade−1). Geographically, the North and Equatorial Indian Oceans are responsible for much of the decline in PP, falling 0.16 and 0.69 PgC y−1 decade−1, respectively. Reduced production by large, fast-growing diatoms along with chlorophytes characterizes the decline here. In contrast, increases in PP are found in the North and North Central Pacific. The increases here are led by chlorophytes in the North Pacific and the small cyanobacteria in the North Central Pacific. These results suggest that the multi-decadal satellite observational record, coupled with an underlying representation of marine biodiversity in a model, can monitor the uptake of carbon by phytoplankton and that changes, although small, are occurring in the global oceans.

Funder

National Aeronautics and Space Administration

Publisher

IOP Publishing

Subject

Public Health, Environmental and Occupational Health,General Environmental Science,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3