Evaluation of Near-Taiwan Strait Sea Surface Wind Forecast Based on PanGu Weather Prediction Model

Author:

Yi Jun1,Li Xiang1,Zhang Yunfei1,Yao Jiawei1,Qu Hongyu2,Yi Kan3

Affiliation:

1. Key Laboratory of Marine Hazards Forecasting, National Marine Environment Forecasting Center, Beijing 100081, China

2. National Meteorological Center, Beijing 100081, China

3. Institute of Science and Technology, China Three Gorges Corporation, Beijing 101100, China

Abstract

Utilizing observed wind speed and direction data from observation stations near the Taiwan Strait and ocean buoys, along with forecast data from the EC model, GRAPES_GFS model, and PanGu weather prediction model within the same period, RMSE, MAE, CC, and other parameters were calculated. To comparatively evaluate the forecasting performance of the PanGu weather prediction model on the sea surface wind field near the Taiwan Strait from 00:00 on 1 June 2023, to 23:00 on 31 May 2024. The PanGu weather prediction model is further divided into the ERA5 (PanGu) model driven by ERA5 initial fields and the GRAPES_GFS (PanGu) model driven by GRAPES_GFS initial fields. The main conclusions are as follows: (1) over a one-year evaluation period, for wind speed forecasts with lead times of 0 h to 120 h in the Taiwan Strait region, the overall forecasting skill of the PanGu weather prediction model is superior to that of the model forecasts; (2) different initial fields input into the PanGu weather prediction model lead to different final forecast results, with better initial field data corresponding to forecast results closer to observations, thus indicating the operational transferability of the PanGu model in smaller regions; (3) regarding forecasts of wind speed categories, the credibility of the results is high when the wind speed level is ≤7, and the PanGu weather prediction model performs better among similar forecasts; (4) although the EC model’s wind direction forecasts are closer to the observation field results, the PanGu weather forecasting model also provides relatively accurate and rapid forecasts of the main wind directions within a shorter time frame.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Research Project of China Three Gorges Corporation

Publisher

MDPI AG

Reference43 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3