Neural Hierarchical Interpolation for Standardized Precipitation Index Forecasting

Author:

Magallanes-Quintanar Rafael1ORCID,Galván-Tejada Carlos Eric1ORCID,Galván-Tejada Jorge Isaac1,Gamboa-Rosales Hamurabi1ORCID,Méndez-Gallegos Santiago de Jesús2ORCID,García-Domínguez Antonio1ORCID

Affiliation:

1. Unidad Académica de Ingeniería Eléctrica, Universidad Autónoma de Zacatecas, Jardín Juárez 147, Centro, Zacatecas CP 98000, Mexico

2. Campus San Luis Potosí, Colegio de Postgraduados, Salinas de Hidalgo, San Luis Potosí CP 78622, Mexico

Abstract

In the context of climate change, studying changes in rainfall patterns is a crucial area of research, remarkably so in arid and semi-arid regions due to the susceptibility of human activities to extreme events such as droughts. Employing predictive models to calculate drought indices can be a useful method for the effective characterization of drought conditions. This study applies two type of machine learning methods—long short-term memory (LSTM) and Neural Hierarchical Interpolation for Time Series Forecasting (N-HiTS)—to develop and deploy artificial neural network models with the aim of predicting the regional standardized precipitation index (SPI) in four regions of Zacatecas, Mexico. The predictor variables were a set of climatological time series data spanning from 1964 to 2020. The results suggest that the N-HiTS model outperforms the LSTM model in the prediction and forecasting of SPI time series for all regions in terms of performance metrics: the Mean Squared Error, Mean Absolute Error, Coefficient of Determination and ξ correlation coefficient range from 0.0455 to 0.5472, from 0.1696 to 0.6661, from 0.9162 to 0.9684 and from 0.9222 to 0.9368, respectively, for the regions under study. Consequently, the outcomes revealed the successful performance of the N-HiTS models in accurately predicting the SPI across the four examined regions.

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3