Assessment and Ensemble-Based Analysis of the Landfalling Typhoon Muifa (2022)

Author:

Tan Yan12,Huang Wei12,Zhang Xiping12

Affiliation:

1. Shanghai Typhoon Institute, China Meteorological Administration, Shanghai 200030, China

2. Key Laboratory of Numerical Modeling for Tropical Cyclone, China Meteorological Administration, Shanghai 200030, China

Abstract

By considering the uncertainties in the initial field, model physical processes, and lateral boundary conditions, the Shanghai Weather And Risk Model System-Ensemble Prediction System (SWARMS-EN) is constructed. According to the prediction results of typhoon Muifa (2022), the daily track error of SWARMS-EN within 5 days is 70.6 km, 142.2 km, 129.1 km, 174.5 km, and 203.5 km, respectively. When compared with the Typhoon Ensemble Data Assimilation and Prediction System (TEDAPS) and the Global Ensemble Forecast System (GEFS) of the National Centers for Environmental Prediction (NCEP) in homogeneous conditions, SWARMS-EN performs better than TEDAPS within 72 h and better than GEFS beyond 72 h in track forecasting. This indicates an improvement in forecasting accuracy. The ensemble spread within two days is less than the root mean square error (RMSE), according to an analysis of the relationship between ensemble RMSE and spread, which shows that SWARMS-EN has no apparent systematic bias overall. The system has improved the ensemble RMSE and spread, indicating that it can better represent the uncertainty of the forecast and produce more reliable forecasts. Additionally, SWARMS-EN provides the landfall forecast five days in advance. The ensemble-based analysis suggests that the large-scale circulation is the primary factor contributing to the forecast differences among members, and the strong steering flow provides an indication of the landfalling forecast. The analysis of the ensemble characteristics of the initial field indicates that the initial perturbation between the wind field and the temperature field in the dynamically unstable region (such as near a tropical cyclone) exhibits flow dependence, and the small perturbation shows continuity throughout the entire troposphere. The distribution of ensemble spread and disturbance energy exhibited a reasonable growth stage as the forecast lead time increased. Disturbance internal energy dominated the lower troposphere, while the upper troposphere was mainly characterized by disturbance kinetic energy. Disturbance kinetic energy played a leading role in the evolution process. This conclusion further confirms the importance of paying attention to the initial small perturbations near TC in order to optimize the initial perturbation.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Reference30 articles.

1. The advances and discussions on China operational typhoon forecasting;Xu;Meteor. Mon.,2010

2. Characters and objective assessment of disasters caused by typhoon in China;Lei;Acta Meteorol. Sin.,2009

3. Growing threat of rapidly-intensifying tropical cyclones in East Asia;Liu;Adv. Atmos. Sci.,2022

4. Landfalling Tropical Cyclones: Forecast Problems and Associated Research Opportunities;Marks;Bull. Am. Meteorol. Soc.,1998

5. Research progress in the unusual variations of typhoons before and after landfalling;Duan;Acta Meteorol. Sin.,2014

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3