Giant Aufeis in the Pangong Tso Basin: Inventory of a Neglected Cryospheric Component in Eastern Ladakh and Western Tibet

Author:

Schmitt Tobias1ORCID,Brombierstäudl Dagmar1ORCID,Schmidt Susanne1ORCID,Nüsser Marcus12ORCID

Affiliation:

1. Department of Geography, South Asia Institute (SAI), Heidelberg University, 69115 Heidelberg, Germany

2. Heidelberg Center for the Environment (HCE), Heidelberg University, 69120 Heidelberg, Germany

Abstract

Cryosphere studies in High Mountain Asia (HMA) typically focus on glaciers, seasonal snow cover, and permafrost. As an additional and mostly overlooked cryosphere component, aufeis occurs frequently in cold-arid regions and covers extensive areas of the Trans-Himalaya and Tibetan Plateau. This largely neglected cryosphere component generally forms in winter from repeated freezing of seepage or overflow. In this article, the occurrence of aufeis fields in the endorheic Pangong Tso Basin (PTB), with a total area of 31,000 km2, is inventoried and examined. Based on a semi-automatic remote sensing approach using Sentinel-2 imagery, about 1000 aufeis fields were detected in the spring of 2019, covering a total area of approximately 86 km2 and with an average individual size of 0.08 km2, while the largest field covered an area of 14.8 km2. A striking contrast between the northern and southern portions of the PTB characterized the spatial distribution of large aufeis fields. All large (>0.5 km2) and 13 persisting aufeis fields were located along broad valleys in the northern portion. Furthermore, a multi-temporal comparison between 1994 and 2023 shows that the number of remaining aufeis fields in autumn varied between 8 and 29, with a maximum in 2019. Their total area ranged between about 0.3 km2 in 1994 and 2023 to about 1.2 km2 in 2015 and 2019. This study complements recent aufeis inventories from the Trans-Himalayan region of Ladakh and closes the gap to the Tibetan Plateau.

Funder

German Research Foundation

Publisher

MDPI AG

Reference79 articles.

1. Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegría, A., Nicolai, M., and Okem, A. (2019). IPCC Special Report on the Ocean and Cryosphere in a Changing Climate, Cambridge University Press.

2. Potential Impacts of a Warming Climate on Water Availability in Snow-Dominated Regions;Barnett;Nature,2005

3. Importance and Vulnerability of the World’s Water Towers;Immerzeel;Nature,2020

4. Increasing Dependence of Lowland Populations on Mountain Water Resources;Viviroli;Nat. Sustain.,2020

5. Contribution Potential of Glaciers to Water Availability in Different Climate Regimes;Kaser;Proc. Natl. Acad. Sci. USA,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3