Monitoring of the Icing Process and Simulation of Its Formation Mechanism in the Cut Slope of Beihei Highway

Author:

Shan Wei1234ORCID,Hou Peijie1ORCID,Xu Guangchao1ORCID,Du Helong1,Guo Ying1234,Zhang Chengcheng1234

Affiliation:

1. Institute of Cold Regions Science and Engineering, Northeast Forestry University, Harbin 150040, China

2. Ministry of Education Observation and Research Station of Permafrost Geo-Environment System in Northeast China (MEORS-PGSNEC), Harbin 150040, China

3. Collaborative Innovation Centre for Permafrost Environment and Road Construction and Maintenance in Northeast China (CIC-PERCM), Harbin 150040, China

4. Low-Carbon Road Construction and Maintenance Engineering Technology Research Center in Northeast Permafrost Region of Heilongjiang Province (LCRCMET-HLJ), Harbin 150040, China

Abstract

Icing in cut slopes is a serious risk to transportation safety in cold regions. Research on the occurrence process and mechanism of icing is a prerequisite for proposing effective management measures. We took the cut slopes of the K162 section of the Beihei Highway as the research object. We used a combination of field investigation, geological exploration, monitoring, and simulation to study and analyze the power source, occurrence process, and triggering mechanism of icing in cut slopes. The results show that the geologic type of this cut slope is a mudstone–sandstone interaction stratum. Abundant shallow groundwater is the source of water for icing. The excavation of cut slopes extends the effect of negative temperatures on groundwater flow during the winter period. The process of ice formation in cut slopes can be described as follows: As the environmental temperature drops, the surface soil begins to freeze, resulting in a gradual narrowing of the water channel; then, the groundwater flow is blocked, so that the internal pressure begins to rise. When the internal pressure of the pressurized groundwater exceeds the strength of the frozen soil, groundwater overflows from the sandstone layer to the surface, forming icing. The high pore water pressure inside the cut slope is the precursor for the occurrence of icing. The dynamic pressure of the pore water pressure is the main driving force for the formation of icing in cut slopes. The obstruction of the water channel due to ground freezing is the triggering condition for ice formation in cut slopes.

Funder

National Natural Science Foundation of China

Carbon Neutrality Fund of Northeast Forestry University

Science and Technology Project of Heilongjiang Communications Investment Group

Field Scientific Observation and Research Station of the Ministry of Education—Geological Environment System of Permafrost Areas in Northeast China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3