Analysis of Diffusion Characteristics and Influencing Factors of Particulate Matter in Ship Exhaust Plume in Arctic Environment Based on CFD

Author:

Zhu Yuanqing1ORCID,Wan Qiqi1,Hou Qichen1,Feng Yongming1ORCID,Yu Jia1,Shi Jie1,Xia Chong1

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, Harbin 150001, China

Abstract

The gradual opening of the Arctic shipping route has made navigation possible. However, the harm caused by ship exhaust emissions is increasingly severe. Therefore, it is necessary to study the diffusion characteristics of ship exhaust plumes during Arctic navigation. The study focuses on a merchant vessel as the subject of investigation, employing computational fluid dynamics (CFD) simulation techniques to analyze the diffusion characteristics of particulate matter (PM) within ship exhaust plumes under Arctic environmental conditions. The diffusion law of ship exhaust plume PM is clarified, and the influence of three factors, synthetic wind speed, yaw angle and chimney angle, on the PM diffusion is analyzed. It was found that after the PM was discharged from the chimney, the majority of the PM dispersed directly backward along with the external flow field, while a minor fraction lingered at the stern of the ship for an extended period before eventually diffusing backward. Among them, 1235 particles were captured within a range of 200 m from the stern, with a capture rate of 0.6%. When the synthetic wind shows a yaw angle, the capture rate of PM in the interval increases rapidly with the increase of yaw angle, while other factors have less influence on the capture rate of PM. This study provides foundational guidance for predicting PM diffusion from ship exhaust plumes in Arctic environments, thereby enabling more effective strategies for managing such emissions.

Funder

Fundamental Research Funds for the Central Universities of China

Excellent Youth Science Foundation of Hei Longjiang Province

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Ship Emission Measurements Using Multirotor Unmanned Aerial Vehicles: Review;Journal of Marine Science and Engineering;2024-07-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3