Modeling Yield of Irrigated and Rainfed Bean in Central and Southern Sinaloa State, Mexico, Based on Essential Climate Variables

Author:

Llanes Cárdenas Omar1ORCID,Estrella Gastélum Rosa D.1,Parra Galaviz Román E.2ORCID,Gutiérrez Ruacho Oscar G.3,Ávila Díaz Jeován A.4,Troyo Diéguez Enrique5ORCID

Affiliation:

1. Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR–IPN–Sinaloa), Guasave 81101, Sinaloa, Mexico

2. Ingeniería Geodésica, Facultad de Ingeniería Mochis (FIM), Universidad Autónoma de Sinaloa (UAS), Los Mochis 81223, Sinaloa, Mexico

3. Licenciatura en Ecología, Universidad Estatal de Sonora (UES), Hermosillo 85294, Sonora, Mexico

4. Ingeniería Ambiental, Universidad Autónoma de Occidente–Unidad Los Mochis (UAdeO), Los Mochis 81223, Sinaloa, Mexico

5. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), La Paz 23096, Baja California Sur, Mexico

Abstract

The goal was to model irrigated (IBY) and rainfed (RBY) bean yields in central (Culiacán) and southern (Rosario) Sinaloa state as a function of the essential climate variables soil moisture, temperature, reference evapotranspiration, and precipitation. For Sinaloa, for the period 1982–2013 (October–March), the following were calculated: (a) temperatures, (b) average degree days for the bean, (c) cumulative reference evapotranspiration, and (d) cumulative effective precipitation. For essential climate variables, (e) daily soil moisture obtained from the European Space Agency and (f) IBY and RBY from the Agrifood and Fisheries Information Service were used. Multiple linear regressions were significant for predicting IBY–RBY (dependent variables) as a function of essential climate variables (independent variables). The four models obtained were significantly predictive: IBY–Culiacán (Pearson correlation (PC) = 0.590 > Pearson critical correlation (CPC) = |0.349|), RBY–Culiacán (PC = 0.734 > CPC = |0.349|), IBY–Rosario (PC = 0.621 > CPC = |0.355|), and RBY–Rosario (PC = 0.532 > CPC = |0.349|). Due to the lack of irrigation depth data, many studies only focus on modeling RBY; this study is the first in Sinaloa to predict IBY and RBY based on essential climate variables, contributing to the production of sustainable food.

Publisher

MDPI AG

Reference80 articles.

1. (2023, November 11). United Nations, Department of Economic and Social Affairs, Population Division. World Population Prospects 2022, Online Edition. Available online: https://population.un.org/wpp/Download/Standard/Population/.

2. Stacey, N., Friederike, M., Hannes, E., and Naomi, S. (2015). Economics of Land Degradation Initiative: Report for Policy and Decision Makers_ Reaping Economic and Environmental Benefits from Sustainable Land Management, ELD Initiative and Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH. Available online: https://repo.mel.cgiar.org/handle/20.500.11766/4881.

3. Predicción de la producción y rendimiento de frijol, con modelos de redes neuronales artificiales y datos climáticos;Salazar;Biotecnia,2022

4. (2023, October 08). United Nations (UN). The 2030 Agenda and the Sustainable Development Goals: An Opportunity for Latin America and the Caribbean (LC/G.2681-P/Rev.3), Santiago; 2018, 90p. Available online: https://repositorio.cepal.org/server/api/core/bitstreams/6321b2b2-71c3-4c88-b411-32dc215dac3b/content.

5. Satellite Earth Observation for Essential Climate Variables Supporting Sustainable Development Goals: A Review on Applications;Ballari;Remote Sens.,2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3