Predicción de la producción y rendimiento de frijol, con modelos de redes neuronales artificiales y datos climáticos

Author:

Servín-Palestina Miguel,Salazar-Moreno Raquel,López-Cruz Irineo,Medina-García Guillermo,Cid-Ríos José Ángel

Abstract

El estado de Zacatecas ocupa el primer lugar en la producción de frijol de temporal en México. Debido a las repercusiones económicas y de seguridad alimentaria, es importante la predicción de los rendimientos, producción y superficie cosechada, igualmente, conocer las variables climatológicas que mayor efecto tienen en el cultivo de frijol. Los objetivos del presente trabajo fueron 1) desarrollar modelos de redes neuronales artificiales RNA para la predicción de la superficie cosechada (SC), los rendimientos (Rto) y la producción (P) de frijol de temporal en el estado de Zacatecas, empleando datos de temperatura máxima y mínima del aire, precipitación y evaporación durante el periodo 1988-2019. 2) realizar un análisis de sensibilidad para determinar las variables de entrada que tienen mayor influencia en la producción y rendimiento de frijol. Debido a la limitada disponibilidad de datos climáticos, se usó la librería Climatol del paquete estadístico R, para el llenado de datos faltantes. Los resultados muestran que los modelos de RNA son capaces de detectar la influencia del clima en la producción de frijol. La eficiencia global en los modelos RNA fue de 0.89 para Rto y 0.86 para SC.  La producción se estimó con los modelos de RNA para Rto y SC y se obtuvo un R2 =0.80. De acuerdo al análisis de sensibilidad, la evaporación del ciclo del cultivo (Eva) es la variable más importante en la predicción del rendimiento, mientras que la precipitación de agosto (Pp_Ago) y la temperatura mínima (Tmin) influyeron más en la producción.

Publisher

Universidad de Sonora

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3