Abstract
Finding new antibacterial agents from natural products is urgently necessary to address the growing cases of antibiotic-resistant pathogens. Actinomycetes are regarded as an excellent source of therapeutically important secondary metabolites including antibiotics. However, they have not yet been characterized and explored in great detail for their utility in developing countries such as Nepal. In silico molecular docking in addition to antimicrobial assays have been used to examine the efficacy of chemical scaffolds biosynthesized by actinomycetes. This paper depicts the characterization of actinomycetes based on their morphology, biochemical tests, and partial molecular sequencing. Furthermore, antimicrobial assays and mass spectrometry-based metabolic profiling of isolates were studied. Seventeen actinomycete-like colonies were isolated from ten soil samples, of which three isolates showed significant antimicrobial activities. Those isolates were subsequently identified to be Streptomyces species by partial 16S rRNA gene sequencing. The most potent Streptomyces species_SB10 has exhibited an MIC and MBC of 1.22 μg/mL and 2.44 μg/mL, respectively, against each Staphylococcus aureus and Shigella sonnei. The extract of S. species_SB10 showed the presence of important metabolites such as albumycin. Ten annotated bioactive metabolites (essramycin, maculosin, brevianamide F, cyclo (L-Phe-L-Ala), cyclo (L-Val-L-Phe), cyclo (L-Leu-L-Pro), cyclo (D-Ala-L-Pro), N6, N6-dimethyladenosine, albumycin, and cyclo (L-Tyr-L-Leu)) were molecularly docked against seven antimicrobial target proteins. Studies on binding energy, docking viability, and protein-ligand molecular interactions showed that those metabolites are responsible for conferring antimicrobial properties. These findings indicate that continuous research on the isolation of the Streptomyces species from Nepal could lead to the discovery of novel and therapeutically relevant antimicrobial agents in the future.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献