Prediction of Future Land Use/Land Cover Changes Using a Coupled CA-ANN Model in the Upper Omo–Gibe River Basin, Ethiopia

Author:

Lukas Paulos1,Melesse Assefa M.2ORCID,Kenea Tadesse Tujuba1

Affiliation:

1. Faculty of Meteorology and Hydrology, Water Technology Institute, Arba Minch University, Arba Minch 4400, Ethiopia

2. Department of Earth and Environment, Florida International University, Miami, FL 33199, USA

Abstract

Land use/land cover change evaluation and prediction using spatiotemporal data are crucial for environmental monitoring and better planning and management of land use. The main objective of this study is to evaluate land use/land cover changes for the time period of 1991–2022 and predict future changes using the CA-ANN model in the Upper Omo–Gibe River basin. Landsat-5 TM for 1991, 1997, and 2004, Landsat-7 ETM+ for 2010, and Landsat-8 (OLI) for 2016 and 2022 were downloaded from the USGS Earth Explorer Data Center. A random forest machine learning algorithm was employed for LULC classification. The LULC classification result was evaluated using an accuracy assessment technique to assure the correctness of the classification method employing the kappa coefficient. Kappa coefficient values of the classification indicate that there was strong agreement between the classified and reference data. Using the MOLUSCE plugin of QGIS and the CA-ANN model, future LULC changes were predicted. Artificial neural network (ANN) and cellular automata (CA) machine learning methods were made available for LULC change modeling and prediction via the QGIS MOLUSCE plugin. Transition potential modeling was computed, and future LULC changes were predicted using the CA-ANN model. An overall accuracy of 86.53% and an overall kappa value of 0.82 were obtained by comparing the actual data of 2022 with the simulated LULC data from the same year. The study findings revealed that between 2022 and 2037, agricultural land (63.09%) and shrubland (5.74%) showed significant increases, and forest (−48.10%) and grassland (−0.31%) decreased. From 2037 to 2052, the built-up area (2.99%) showed a significant increase, and forest and agricultural land (−2.55%) showed a significant decrease. From 2052 to 2067, the projected LULC simulation result showed that agricultural land (3.15%) and built-up area (0.32%) increased, and forest (−1.59%) and shrubland (−0.56%) showed significant decreases. According to the study’s findings, the main drivers of LULC changes are the expansion of built-up areas and agricultural land, which calls for a thorough investigation using additional data and models to give planners and policymakers clear information on LULC changes and their environmental effects.

Funder

Arba Minch University-Water Resource Research Center

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3