Spatiotemporal Patterns of Evapotranspiration in Central Asia from 2000 to 2020

Author:

Hao Xingming12ORCID,Fan Xue123,Zhao Zhuoyi123,Zhang Jingjing123

Affiliation:

1. State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

2. Akesu National Station of Observation and Research for Oasis Agro-Ecosystem, Akesu 843017, China

3. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Evapotranspiration (ET) affects the dry and wet conditions of a region, particularly in arid Central Asia, where changes in evapotranspiration profoundly influence society, the economy, and ecosystems. However, the changing trends in and driving factors of evapotranspiration in Central Asia remain unclear. Therefore, we used estimated ET and reanalysis data to answer research questions. Our results showed that (1) potential evapotranspiration (PET) and ET showed a generally downward trend, in which PET and ET decreased in 37.93% and 17.42% of the total area, respectively. However, PET and ET showed opposite trends in 59.41% of the study area, mainly showing a decrease in PET and an increase in ET. (2) The absolute contribution rates of vegetation–human activity coupling factor (VH), PET, and precipitation (P) to ET were 43.19%, 40.02%, and 16.79%, respectively, and the VH was the main determiner of ET. (3) Transpiration (ETc) dominated the change in ET in 56.4% of the region, whereas soil evaporation (ETs) dominated the change in ET in the rest of the region. The coverage threshold that determines the dominant contributions of ETc and ETs to ET was approximately 18–19%. Below this coverage threshold, the contribution rate of ETs to ET exceeded that of ETc and vice versa. In the context of global climate change, this study can provide scientific support for the restoration of water resources and sustainability evaluation of water resources.

Funder

Natural Science Foundation of Xingjiang Province of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3