Affiliation:
1. State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety, Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China
2. University of Chinese Academy of Sciences, Beijing 100049, China
3. Akesu National Station of Observation and Research for Oasis Agro-Ecosystem, Akesu 843017, China
Abstract
Central Asia is a drought-prone region that is sensitive to global climate change. The increased actual evapotranspiration intensifies the drought impacts in this area. However, little is known about the similarities and differences between various types of drought in Central Asia, as well as the relative importance of water income and consumption processes during drought events. Therefore, this study evaluates the trends and characteristics of meteorological, agricultural, and hydrological droughts in Central Asia using precipitation, soil moisture, and terrestrial water storage as indicators; explores the temporal correlation of and spatial similarity between various types of drought; and quantitatively assesses the contribution of water balance variables to drought intensity. The results indicate that drought has intensified in Central Asia, and the trends of precipitation, soil moisture, and terrestrial water storage in this region were −0.75 mm·yr−1 (p = 0.36), −0.0003 m3·m−3 yr−1 (p < 0.01), and −0.3742 cm·yr−1 (p < 0.001), respectively. Severe droughts are typically short in duration and high in intensity. Three various types of drought have low temporal correlation and spatial similarity. Furthermore, agricultural and hydrological droughts were primarily driven by actual evapotranspiration, accounting for relative contributions of 64.38% and 51.04% to these drought types, respectively. Moreover, the extent of increased actual evapotranspiration expanded to cover 49.88% of the region, exacerbating agricultural and hydrological droughts in 23.88% and 35.14% of the total study area, respectively. The study findings demonstrate that actual evapotranspiration plays a critical role in causing droughts. This study establishes a theoretical foundation to carry out drought assessment, the construction of multivariate drought indices, and water resource management in Central Asia.
Funder
Independent Deployment Project, the Xinjiang Institute of Ecology and Geography, the Chinese Academy of Sciences
Science Fund for Distinguished Young Scholars of Xinjiang Autonomous Region
Subject
General Earth and Planetary Sciences
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献