ResRandSVM: Hybrid Approach for Acute Lymphocytic Leukemia Classification in Blood Smear Images

Author:

Sulaiman Adel1ORCID,Kaur Swapandeep2,Gupta Sheifali2,Alshahrani Hani1ORCID,Reshan Mana Saleh Al3ORCID,Alyami Sultan1ORCID,Shaikh Asadullah3ORCID

Affiliation:

1. Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia

2. Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura 140401, Punjab, India

3. Department of Information Systems, College of Computer Science and Information Systems, Najran University, Najran 61441, Saudi Arabia

Abstract

Acute Lymphocytic Leukemia is a type of cancer that occurs when abnormal white blood cells are produced in the bone marrow which do not function properly, crowding out healthy cells and weakening the immunity of the body and thus its ability to resist infections. It spreads quickly in children’s bodies, and if not treated promptly it may lead to death. The manual detection of this disease is a tedious and slow task. Machine learning and deep learning techniques are faster than manual detection and more accurate. In this paper, a deep feature selection-based approach ResRandSVM is proposed for the detection of Acute Lymphocytic Leukemia in blood smear images. The proposed approach uses seven deep-learning models: ResNet152, VGG16, DenseNet121, MobileNetV2, InceptionV3, EfficientNetB0 and ResNet50 for deep feature extraction from blood smear images. After that, three feature selection methods are used to extract valuable and important features: analysis of variance (ANOVA), principal component analysis (PCA), and Random Forest. Then the selected feature map is fed to four different classifiers, Adaboost, Support Vector Machine, Artificial Neural Network and Naïve Bayes models, to classify the images into leukemia and normal images. The model performs best with a combination of ResNet50 as a feature extractor, Random Forest as feature selection and Support Vector Machine as a classifier with an accuracy of 0.900, precision of 0.902, recall of 0.957 and F1-score of 0.929.

Funder

Deanship of Scientific Research at Najran University

Publisher

MDPI AG

Subject

Clinical Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3