Phenotyping and predicting wheat spike characteristics using image analysis and machine learning

Author:

Hammers Mik1ORCID,Winn Zachary J.1ORCID,Ben‐Hur Asa2,Larkin Dylan3,Murry Jamison4,Mason Richard Esten1

Affiliation:

1. Department of Soil and Crop Sciences Colorado State University Fort Collins Colorado USA

2. Department of Computer Science Colorado State University Fort Collins Colorado USA

3. Limagrain Cereal Seeds Walla Walla Washington USA

4. United States Department of Agriculture Natural Resource Conservation Service Lonoke Arkansas USA

Abstract

AbstractImprovements in trait phenotyping are needed to increase the quantity and quality of data available for genetic improvement of crops. In this study, we used moderate throughput image analysis and machine learning as a pipeline for phenotyping a key wheat spike characteristic: spikelet number per spike. A population of 594 soft red winter wheat inbred lines was evaluated in the field for 2 years and images of wheat spikes were taken and used to train deep‐learning algorithms to predict spikelet number. A total of 12,717 images were used to train, test, and validate a basic regression convolutional neural network (CNN), a visual geometry group application regression model, VGG16, the ResNet152V2 model, and the EfficientNetV2L model. The EfficientNetV2L model was the most accurate, having the lowest mean absolute error, second lowest root mean square error, and highest coefficient of determination (mean absolute error [MAE] = 0.60, root mean square error [RMSE] = 0.79, and R2 = 0.90). The ResNet152V2 model was slightly less accurate with a slightly better fit (MAE = 0.61,m RMSE = 0.78, and R2 = 0.87), followed by the basic CNN (MAE = 0.75, RMSE = 1.00, and R2 = 0.74) and finally by the VGG16 (MAE = 1.51, RMSE = 1.29, and R2 = 0.076). With an average error of just above one half of a spikelet, utilizing image analysis and machine learning counting methods could be used for multiple breeding applications, including direct selection of spikelet number, to provide data to identify quantitative trait loci, or for training whole genome selection models.

Publisher

Wiley

Subject

Plant Science,Agronomy and Crop Science

Reference43 articles.

1. Abadi M. Agarwal A. Barham P. Brevdo E. Chen Z. Citro C. Corrado G. S. Davis A. Dean J. Devin M. Ghemawat S. Goodfellow I. Harp A. Irving G. Isard M. Jia Y. Jozefowicz R. Kaiser L. Kudlur M. …Zheng X.(2016).Tensorflow: Large‐scale machine learning on heterogeneous distributed systems. arXiv.https://doi.org/10.48550/arXiv.1603.04467

2. Effect of Variation for Major Growth Habit Genes on Maturity and Yield in Five Spring Wheat Populations

3. NIH Image to ImageJ: 25 years of image analysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3