An Effective Mental Stress State Detection and Evaluation System Using Minimum Number of Frontal Brain Electrodes

Author:

Attallah Omneya

Abstract

Currently, mental stress is a common social problem affecting people. Stress reduces human functionality during routine work and may lead to severe health defects. Detecting stress is important in education and industry to determine the efficiency of teaching, to improve education, and to reduce risks from human errors that might occur due to workers’ stressful situations. Therefore, the early detection of mental stress using machine learning (ML) techniques is essential to prevent illness and health problems, improve quality of education, and improve industrial safety. The human brain is the main target of mental stress. For this reason, an ML system is proposed which investigates electroencephalogram (EEG) signal for thirty-six participants. Extracting useful features is essential for an efficient mental stress detection (MSD) system. Thus, this framework introduces a hybrid feature-set that feeds five ML classifiers to detect stress and non-stress states, and classify stress levels. To produce a reliable, practical, and efficient MSD system with a reduced number of electrodes, the proposed MSD scheme investigates the electrodes placements on different sites on the scalp and selects that site which has the higher impact on the accuracy of the system. Principal Component analysis is employed also, to reduce the features extracted from such electrodes to lower model complexity, where the optimal number of principal components is examined using sequential forward procedure. Furthermore, it examines the minimum number of electrodes placed on the site which has greater impact on stress detection and evaluation. To test the effectiveness of the proposed system, the results are compared with other feature extraction methods shown in literature. They are also compared with state-of-the-art techniques recorded for stress detection. The highest accuracies achieved in this study are 99.9%(sd = 0.015) and 99.26% (sd = 0.08) for identifying stress and non-stress states, and distinguishing between stress levels, respectively, using only two frontal brain electrodes for detecting stress and non-stress, and three frontal electrodes for evaluating stress levels respectively. The results show that the proposed system is reliable as the sensitivity is 99.9(0.064), 98.35(0.27), specificity is 99.94(0.02), 99.6(0.05), precision is 99.94(0.06), 98.9(0.23), and the diagnostics odd ratio (DOR) is ≥ 100 for detecting stress and non-stress, and evaluating stress levels respectively. This shows that the proposed framework has compelling performance and can be employed for stress detection and evaluation in medical, educational and industrial fields. Finally, the results verified the efficiency and reliability of the proposed system in predicting stress and non-stress on new patients, as the accuracy achieved 98.48% (sd = 1.12), sensitivity = 97.78% (sd = 1.84), specificity = 97.75% (sd = 2.05), precision = 99.26% (sd = 0.67), and DOR ≥ 100 using only two frontal electrodes.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 80 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3