A Novel Hybrid Runge Kutta Optimizer with Support Vector Machine on Gene Expression Data for Cancer Classification

Author:

Houssein Essam1ORCID,Hassan Hager1,Samee Nagwan2ORCID,Jamjoom Mona3

Affiliation:

1. Faculty of Computers and Information, Minia University, Minia 61519, Egypt

2. Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia

3. Department of Computer Sciences, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh 11671, Saudi Arabia

Abstract

It is crucial to accurately categorize cancers using microarray data. Researchers have employed a variety of computational intelligence approaches to analyze gene expression data. It is believed that the most difficult part of the problem of cancer diagnosis is determining which genes are informative. Therefore, selecting genes to study as a starting point for cancer classification is common practice. We offer a novel approach that combines the Runge Kutta optimizer (RUN) with a support vector machine (SVM) as the classifier to select the significant genes in the detection of cancer tissues. As a means of dealing with the high dimensionality that characterizes microarray datasets, the preprocessing stage of the ReliefF method is implemented. The proposed RUN–SVM approach is tested on binary-class microarray datasets (Breast2 and Prostate) and multi-class microarray datasets in order to assess its efficacy (i.e., Brain Tumor1, Brain Tumor2, Breast3, and Lung Cancer). Based on the experimental results obtained from analyzing six different cancer gene expression datasets, the proposed RUN–SVM approach was found to statistically beat the other competing algorithms due to its innovative search technique.

Funder

Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3