Energy Management of Microgrids with a Smart Charging Strategy for Electric Vehicles Using an Improved RUN Optimizer

Author:

Meteab Wisam Kareem1,Alsultani Salwan Ali Habeeb1,Jurado Francisco1ORCID

Affiliation:

1. Department of Electrical Engineering, University of Jaén, EPS Linares, 23700 Jaén, Spain

Abstract

Electric vehicles (EVs) and renewable energy resources (RERs) are widely integrated into electrical systems to reduce dependency on fossil fuels and emissions. The energy management of microgrids (MGs) is a challenging task due to uncertainty about EVs and RERs. In this regard, an improved version of the RUNge Kutta optimizer (RUN) was developed to solve the energy management of MGs and assign the optimal charging powers of the EVs for reducing the operating cost. The improved RUN optimizer is based on two improved strategies: Weibull flight distribution (WFD) and a fitness–distance balance selection (FDB) strategy, which are applied to the conventional RUN optimizer to improve its performance and searching ability. In this paper, the energy management of MGs is solved both at a deterministic level (i.e., without considering the uncertainties of the system) and while considering the uncertainties of the system, with and without a smart charging strategy for EVs. The studied MG consists of two diesel generators, two wind turbines (WTs), three fuel cells (FCs), an electrical vehicle charging station and interconnected loads. The obtained results reveal that the proposed algorithm is efficient for solving the EM of the MG compared to the other algorithms. In addition, the operating cost is reduced with the optimal charging strategy.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Multi-Objective Improved Cockroach Swarm Algorithm Approach for Apartment Energy Management Systems;Information;2023-09-25

2. Control over Distributed Topology of Wire-less Sensor Network based on Power Optimization;2023 4th International Conference on Big Data & Artificial Intelligence & Software Engineering (ICBASE);2023-08-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3