1. Bommasani, R., Hudson, D.A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M.S., Bohg, J., Bosselut, A., and Brunskill, E. (2021). On the opportunities and risks of foundation models. arXiv.
2. Mattjie, C., de Moura, L.V., Ravazio, R.C., Kupssinskü, L.S., Parraga, O., Delucis, M.M., and Barros, R.C. (2023). Exploring the zero-shot capabilities of the segment anything model (sam) in 2d medical imaging: A comprehensive evaluation and practical guideline. arXiv.
3. Qiu, J., Li, L., Sun, J., Peng, J., Shi, P., Zhang, R., Dong, Y., Lam, K., Lo, F.P.W., and Xiao, B. (2023). Large AI Models in Health Informatics: Applications, Challenges, and the Future. arXiv.
4. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T., Whitehead, S., Berg, A.C., and Lo, W.Y. (2023). Segment Anything. arXiv.
5. Deng, R., Cui, C., Liu, Q., Yao, T., Remedios, L.W., Bao, S., Landman, B.A., Wheless, L.E., Coburn, L.A., and Wilson, K.T. (2023). Segment Anything Model (SAM) for Digital Pathology: Assess Zero-shot Segmentation on Whole Slide Imaging. arXiv.