Reducing Training Data Using Pre-Trained Foundation Models: A Case Study on Traffic Sign Segmentation Using the Segment Anything Model

Author:

Henninger Sofia1ORCID,Kellner Maximilian12ORCID,Rombach Benedikt1ORCID,Reiterer Alexander12ORCID

Affiliation:

1. Fraunhofer Institute for Physical Measurement Techniques IPM, 79110 Freiburg, Germany

2. Department of Sustainable Systems Engineering INATECH, Albert Ludwigs University Freiburg, 79110 Freiburg, Germany

Abstract

The utilization of robust, pre-trained foundation models enables simple adaptation to specific ongoing tasks. In particular, the recently developed Segment Anything Model (SAM) has demonstrated impressive results in the context of semantic segmentation. Recognizing that data collection is generally time-consuming and costly, this research aims to determine whether the use of these foundation models can reduce the need for training data. To assess the models’ behavior under conditions of reduced training data, five test datasets for semantic segmentation will be utilized. This study will concentrate on traffic sign segmentation to analyze the results in comparison to Mask R-CNN: the field’s leading model. The findings indicate that SAM does not surpass the leading model for this specific task, regardless of the quantity of training data. Nevertheless, a knowledge-distilled student architecture derived from SAM exhibits no reduction in accuracy when trained on data that have been reduced by 95%.

Publisher

MDPI AG

Reference59 articles.

1. (2024, January 04). Verkehrszeichenkatalog. Available online: http://www.vzkat.de/2017/VzKat.htm.

2. (2024, January 04). Deutsche Verkehrszeichen nach StVO. Available online: https://www.verkehrszeichen-online.org/.

3. (2024, July 12). Infrastruktur-Straßennetz. Available online: https://bmdv.bund.de/SharedDocs/DE/Artikel/G/infrastruktur-statistik.html.

4. Deep learning;LeCun;Nature,2015

5. Bommasani, R., Hudson, D.A., Adeli, E., Altman, R., Arora, S., von Arx, S., Bernstein, M.S., Bohg, J., Bosselut, A., and Brunskill, E. (2021). On the Opportunities and Risks of Foundation Models. arXiv.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3