High-Resolution Network with Dynamic Convolution and Coordinate Attention for Classification of Chest X-ray Images

Author:

Li Qiang1,Chen Mingyu1,Geng Jingjing1,Adamu Mohammed Jajere1ORCID,Guan Xin1

Affiliation:

1. School of Microelectronics, Tianjin University, Tianjin 300072, China

Abstract

The development of automatic chest X-ray (CXR) disease classification algorithms is significant for diagnosing thoracic diseases. Owing to the characteristics of lesions in CXR images, including high similarity in appearance of the disease, varied sizes, and different occurrence locations, most existing convolutional neural network-based methods have insufficient feature extraction for thoracic lesions and struggle to adapt to changes in lesion size and location. To address these issues, this study proposes a high-resolution classification network with dynamic convolution and coordinate attention (HRCC-Net). In the method, this study suggests a parallel multi-resolution network in which a high-resolution branch acquires essential detailed features of the lesion and multi-resolution feature swapping and fusion to obtain multiple receptive fields to extract complicated disease features adequately. Furthermore, this study proposes dynamic convolution to enhance the network’s ability to represent multi-scale information to accommodate lesions of diverse scales. In addition, this study introduces a coordinate attention mechanism, which enables automatic focus on pathologically relevant regions and capturing the variations in lesion location. The proposed method is evaluated on ChestX-ray14 and CheXpert datasets. The average AUC (area under ROC curve) values reach 0.845 and 0.913, respectively, indicating this method’s advantages compared with the currently available methods. Meanwhile, with its specificity and sensitivity to measure the performance of medical diagnostic systems, the network can improve diagnostic efficiency while reducing the rate of misdiagnosis. The proposed algorithm has great potential for thoracic disease diagnosis and treatment.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin, China

Tianjin University Innovation Foundation

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. COPDNet: An Explainable ResNet50 Model for the Diagnosis of COPD from CXR Images;2023 IEEE 4th Annual Flagship India Council International Subsections Conference (INDISCON);2023-08-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3