Multi-Channel Based Image Processing Scheme for Pneumonia Identification

Author:

Nneji Grace UgochiORCID,Cai JingyeORCID,Deng JianhuaORCID,Monday Happy NkantaORCID,James Edidiong ChristopherORCID,Ukwuoma Chiagoziem Chima

Abstract

Pneumonia is a prevalent severe respiratory infection that affects the distal and alveoli airways. Across the globe, it is a serious public health issue that has caused high mortality rate of children below five years old and the aged citizens who must have had previous chronic-related ailment. Pneumonia can be caused by a wide range of microorganisms, including virus, fungus, bacteria, which varies greatly across the globe. The spread of the ailment has gained computer-aided diagnosis (CAD) attention. This paper presents a multi-channel-based image processing scheme to automatically extract features and identify pneumonia from chest X-ray images. The proposed approach intends to address the problem of low quality and identify pneumonia in CXR images. Three channels of CXR images, namely, the Local Binary Pattern (LBP), Contrast Enhanced Canny Edge Detection (CECED), and Contrast Limited Adaptive Histogram Equalization (CLAHE) CXR images are processed by deep neural networks. CXR-related features of LBP images are extracted using shallow CNN, features of the CLAHE CXR images are extracted by pre-trained inception-V3, whereas the features of CECED CXR images are extracted using pre-trained MobileNet-V3. The final feature weights of the three channels are concatenated and softmax classification is utilized to determine the final identification result. The proposed network can accurately classify pneumonia according to the experimental result. The proposed method tested on publicly available dataset reports accuracy of 98.3%, sensitivity of 98.9%, and specificity of 99.2%. Compared with the single models and the state-of-the-art models, our proposed network achieves comparable performance.

Publisher

MDPI AG

Subject

Clinical Biochemistry

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3